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Fossil resources

Environmental and cost issues



European Union (EU) 

produced 

55 million tonnes of 
vegetal wastes and 

88 million tonnes of 

food wastes in 2016
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Bio-polymers: global production capacity

Currently, 

bioplastics

represent roughly

one percent of the 

335 million tonnes

of plastic

produced annually



Wheat grain

Wheat grain has a multi-layered structure:

sequential milling led to different bran fractions

Ferulic acid is the main phenolic

component and it is mostly linked 

to cell wall polysaccharides
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Ferulic acid
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Phenol:

Poor reactivity toward 

polycondensation

Carboxylic acid:

Possible promoter of 

degradationDouble bond:

Sources of degradation

Solution: chemical modification!



Modification and Polymerization

I Step: Hydrogenation + Esterification
- Mild conditions
- Recyclable catalyst
- One pot
- No purification

II Step: Etherification + Polymerization
- One pot
- No purification
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Poly (ethylene dihydro ferulate)
PEHF

Tg = 27°C

Mw = 12000
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Rigid and flexible 

packaging

Material for agricultural 

applications



NoAW: Innovative approaches to turn agricultural 
waste into ecological and economic assets
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This project has received funding from the European Union’s Horizon 2020 

research and innovation program under grant agreement No 688338 



Vanillic acid

Availability of bio-based vanillic acid

vanillin vanillic acid

PET-mimic
polyesters

……..

Feedstock Amount 

(mg/100 g FW)

Sweet basil, dried 14.00

Oregano, dried 6.00

Thyme, dried 6.10

Dried fruits (date) 4.13

Red wine 0.32

Cereals (oat, rice) 0.28

Polyethylene
vanillate (PEV)

This project has received funding from the European Union’s Horizon 2020 

research and innovation program under grant agreement No 688338 
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Polyethylene vanillate (PEV)

ONE POT PROCEDURE
NO SOLVENT NEEDED

NO PURIFICATION STEP
100% POTENTIALLY BIOBASED 

PROCESS

methyl vanillate

100% bio-based

PET-like polymer

Vanillic acid as aromatic building block

Tfirst stage = 180°C, t =3 h

Tsecond stage = 240°C, t =3.5 h

Sb2O3

This project has received funding from the European Union’s Horizon 2020 

research and innovation program under grant agreement No 688338 



Polyethylene vanillate PEV PET

Tm = 264°C

∆Hm = 77 J/g

Tg = 74°C

Molecular weight = 11000

Tm = 260°C

∆Hm = 42 J/g

Tg = 76°C

High level of crystallinity (about 58%)

Mobility of the chain around the rigid aromatic ring

brittleness

Comparison between PEV and PET

Cristallinity = about 26%

This project has received funding from the European Union’s Horizon 2020 

research and innovation program under grant agreement No 688338 

copolymers



Copolymers are processable and 

filmable.

The brittleness of PEV has been

overcome.

The colour is good.

Processability

This project has received funding from the European Union’s Horizon 2020 

research and innovation program under grant agreement No 688338 



12-hydroxy-cis-9-octadecenoic acid

Ricinoleic acid

Castor Plant 

Ricinus Communis

beans contain 

castor oil

Tg = -67 °C 
viscous liquid at RT
antibacterial properties

PRA



Copolymers based on vanillic acid and 

polyricinoleic acid for active packaging 

applications

New materials based on vanillic acid 
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Polyphenols

They are characterized by antioxidant and 
antibacterial properties

They can be used as additives for polymer

formulation

If mixed to a polymeric matrix at the molten

state, they can confer these properties to the 
material.

High value compounds from food/agro waste
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Protocatechuic
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MULTIFUNCTIONAL MATERIALS

With antibacterial, antioxidant, barrier, 
mechanical properties

Protection of bioactive molecules
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food compatible
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Final extraction residue

Optimised solvent-based extraction with 75% (v/v) 

acetone was selected as the best process for the 

recovery of bioactive molecules from both red and 

white grape pomace. 

Garganega

(WHITE) 

residue

Merlot 

(RED) 

residue

Dog-bones of PHBV (on the 

left) and the composites 

containing 5, 10 and 20 wt% 

of residues from the 

polyphenol extraction from 

white pomaces (from left to 

right)

This project has received funding from the European Union’s Horizon 2020 

research and innovation program under grant agreement No 688338 



Tensile tests
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From final extraction residue to new materials

Circular economy 

principles

This project has received funding from the European Union’s Horizon 2020 

research and innovation program under grant agreement No 688338 



Olive Mill Wastewater (OMW)

Wastewater

83 - 94% 

0.4 - 2.5% mineral salts: 

K+, Ca2+,Na+….

4-16% organic compounds:

 Low pH (about 5) 

 High electrical conductivity

 Dark-color (caused by lignin

polymerized with phenolic

compounds) 

2-15%: phenolic compounds

5

Virgin 
Olive Oil

Direct valorization of waste



TOTAL PHENOLS CONCENTRATION: 4.51 ±±±± 0.65 g GA eq / L 

PHENOLIC COMPOUND CONCENTRATION (µµµµM) FORMULA

3,4-Dihydroxybenzoic acid 249.3 ±±±± 12.8

Vanillic acid 70.1 ±±±± 5.3

trans-cinnamic acid 44.1 ±±±± 8.0

Gallic acid 17.3 ±±±± 0.8

Chlorogenic acid 12.1 ±±±± 1.7

Composition of OMW

6



Intercalation in Layered Double Hydroxides (LDHs)

7

biocompatible 
food compatible
tunable composition

OMW

Antioxidant biomolecules



 Olive mill wastewater was successfully exploited, WITHOUT ANY PRE-

TREATMENT, through intercalation into a LDH;

 The dispersion of LDHs into the matrices was good;

 The LDHs protected the polymer matrices from oxidation;

 Olive mill wastewater improved the durability of some polymers such as

PBS and PP.

Intercalation in Layered Double Hydroxides (LDHs)



Final conclusions

 Strategic routes to fully valorize agro-waste can be developed

 High value molecules can be exploited as monomers to prepare new 

polymeric materials (homopolymers and copolymers)

 Materials with tunable properties and intrinsic antibacterial performances 

can be prepared

 High value molecules can be exploited as additives to impart

multifunctional properties

 LDH structures can stabilize the additives

 The final solid extration residues can be used as filler for polymeric

matrix without deterioring mechanical performances and contributing to 

decrease the costs of the matrix

 In some cases agro-waste can be directly added to the polymeric matrix

to prepare new composites.
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